Construction of the Integers
You may have heard of the integers before. Namely, it’s the set of numbers
stretching on infinitely. But what fundamental properties does this amazing set satisfy? How much can we derive based on these axioms? Are the theorems we see and take for granted really trivial?
The integers, commonly denoted as , are governed by two operations: addition (
) andĀ multiplication (
). Specifically, we haveĀ additive and multiplicative closure, which means
This means that if we take two integers and
, their sum
and their product
are integers as well. We also quickly see that the integers form a ring, as for all
we have the following properties:
With the integers defined, we now look at one of its special subsets: the positive integers. How do we define positivity? We cannot simply say an integer is positive when it’s greater than 0, as we have not defined the notion of order in the integers, and thus cannot say when integers are greater or less than each other.
Exercise: Is there a way to define “greater than” or “less than” with our above axioms?
Let be a subset of the integers that is closed under addition and multiplication. Remember that this means if we have
, then
and
must also be in
. But this is not enough to construct the positive integers; the integers is a subset of the integers satisfying additive and multiplicative closure. Thus, we stipulate further that the identity
cannot be in
, and that for any integer
, only one of
and
lie in
(here,
refers to the additive inverse guaranteed by Negativity).
Exercise: Does the positive integers satisfy these two properties?
Exercise: How do we know that are not both in
?
can either be the positive integers or the negative integers. To simplify things, we call the positive integers
and the negative integers
. Now we can define the symbols
and
. Let
be integers where
. We say
if
, and
if
.